产品图片
产品图片
产品图片
产品图片
产品图片
产品图片
产品图片
产品图片
产品图片
产品图片
产品图片
产品图片
产品图片

MT160 Ultrasonic Thickness Gauge

Brand:

Mitech

Model:

MT160

Measuring range:

0.75-300mm

Resolution Accuracy:

0.1/0.01mm

Communication storage:

USB

Working time:

100h (EL backlight off).

Main unit weight:

245g

Dimensions:

150*74*32mm

Package dimensions:

31.5*24.5*8.5cm

Total weight:

1.5kg

Product

  • Overview
  • Graphic
  • Technical
  • Configuration
  • Related

Product

  • Overview
  • Graphic
  • Technical
  • Configuration
  • Related
  • Product Overview

    The model MT160 is a digital ultrasonic thickness gauge .Based on the principle of ultrasonic principle, the instrument is capable of measuring the thickness of various materials, such as metal, plastic, ceramic, glass and many other good ultrasonic conductors. It of all kinds of materials. Compared with the traditional measurement methods, the advantages of ultrasonic thickness gauge is exposed to one side of the workpiece to complete the measurement. Its unique non-destructive testing performance provide the perfect solution for the thickness testing of closed pipes, containers, etc. It is widely used in pertroleum , chemical ,metallurgy, shipbuilding, aviation, aerospace and other fields because of monitoring corrosion thinning degree of various pipes and pressure vessels. It can also be used for precise measurement of sheet metal and machined parts.

    Function & application

    Capable of performing measurements on a wide range of m aterial, including metals, plastic, ceramics, composites, epoxies, glass and other ultrasonic wave well-conductive materials.Transducer models are available for special application, including for coarse grain material and high temperature applications.

    Working Principle

    The digital ultrasonic thickness gauge determines the thickness of a part or structure by accurately measuring the time required for a short ultrasonic pulse generated by a transducer to travel through the thickness of the material, reflect from the back or inside surface, and be returned to the transducer. The measured two-way transit time is divided by two to account for the down-and-back travel path, and then multiplied by the velocity of sound in the material. The result is expressed in the well-known relationship: H=v×t/2  

    Where

    HThickness of the test piece. 

    vSound Velocity in the material. 

    tThe measured round-trip transit time. 

    Working Conditions

    Operating Temperature: 20℃~+60; 

    Storage Temperature-30℃~+70℃ 

    Relative Humidity 90%; 

    The surrounding environment should avoid of vibratin, strong magentic field, corrosive medium and heavy dust. 

    Instrument Features

     Suitable for measuring metal (such as steel, cast iron, aluminum, copper, etc.) , plastics, ceramics, glass, fiber glass and any other good ultrasonic conductors;

    Dual straight beam probes with different frequencies and crystal sizes are available;

    Zero calibration, two-point calibration, automatic error correction system;

    Known thickness, sound speed can be measured, in order to improve the measurement accuracy;

    Coupling status indicator showing the coupling status;

     EL backlight for easy use in dimly lit environments;

    Remaining battery indicator can display the remaining power in real time;

    Auto sleep and auto power off function to conserve battery life

    Small, portable, high reliability for harsh operating environment, anti-vibration, anti-shock and anti-electromagnetic interference.

    Operating Method and Attentions

    Measuring pipe and tubing

    When measuring a piece of pipe to determine the thickness of the pipe wall, orientation of the transducers is important. If the diameter of the pipe is larger than approximately 4 inches, measurements should be made with the transducer oriented so that the gap in the wearface is perpendicular (at right angle) to the long axis of the pipe. For smaller pipe diameters, two measurements should be performed, one with the wearface gap perpendicular, another with the gap parallel to the long axis of the pipe. The smaller of the two displayed values should then be taken as the thickness at that point.

    Measuring hot surfaces 

    The velocity of sound through a substance is dependant upon its temperature. As materials heat up, the velocity of sound through them decreases. In most applications with surface temperatures less than about 100℃, no special procedures must be observed. At temperatures above this point, the change in sound velocity of the material being measured starts to have a noticeable effect upon ultrasonic measurement. At such elevated temperatures, it is recommended that the user perform a calibration procedure on a sample piece of known thickness, which is at or near the temperature of the material to be measured. This will allow the gauge to correctly calculate the velocity of sound through the hot material.

    When performing measurements on hot surfaces, it may also be necessary to use a specially constructed high-temperature transducer. These transducers are built using materials which can withstand high temperatures. Even so, it is recommended that the probe be left in contact with the surface for as short a time as needed to acquire a stable measurement. While the transducer is in contact with a hot surface, it will begin to heat up, and through thermal expansion and other effects, may begin to adversely affect the accuracy of measurements.

    Measuring laminated materials 

    Laminated materials are unique in that their density (and therefore sound-velocity) may vary considerably from one piece to another. Some laminated materials may even exhibit noticeable changes in sound-velocity across a single surface. The only way to reliably measure such materials is by performing a calibration procedure on a sample piece of known thickness. Ideally, this sample material should be a part of the same piece being measured, or at least from the same lamination batch. By calibrating to each test piece individually, the effects of variation of sound-velocity will be minimized. 

    An additional important consideration when measuring laminates, is that any included air gaps or pockets will cause an early reflection of the ultrasound beam. This effect will be noticed as a sudden decrease in thickness in an otherwise regular surface. While this may impede accurate measurement of total material thickness, it does provide the user with positive indication of air gaps in the laminate. 

    Suitability of materials 

    Ultrasonic thickness measurements rely on passing a sound wave through the material being measured. Not all materials are good at transmitting sound. Ultrasonic thickness measurement is practical in a wide variety of materials including metals, plastics, and glass. Materials that are difficult include some cast materials, concrete, wood, fiberglass, and some rubber. 

    Couplants 

    All ultrasonic applications require some medium to couple the sound from the transducer to the test piece. Typically a high viscosity liquid is used as the medium. The sound used in ultrasonic thickness measurement does not travel through air efficiently.

    A wide variety of couplant materials may be used in ultrasonic gauging. Propylene glycol is suitable for most applications. In difficult applications where maximum transfer of sound energy is required, glycerin is recommended. However, on some metals glycerin can promote corrosion by means of water absorption and thus may be undesirable. Other suitable couplants for measurements at normal temperatures may include water, various oils and greases, gels, and silicone fluids. Measurements at elevated temperatures will require specially formulated high temperature couplants. 

    Inherent in ultrasonic thickness measurement is the possibility that the instrument will use the second rather than the first echo from the back surface of the material being measured while in standard pulse-echo mode. This may result in a thickness reading that is TWICE what it should be. The Responsibility for proper use of the instrument and recognition of these types of phenomenon rests solely with the user of the instrument. 

    Instrument Maintenance

    When the thickness gauge appears some other abnormal phenomena, please do not dismantle or adjust any fixedly assembled parts. Fill in and present the warranty card to us. The warranty service can be carried on. Keep it away from vibration, strong magnetic field, corrosive medium, dumpiness and dust. Storage in ordinary temperature. With Original packing, transport is allowed on the third grade highway.

  • Measuring Range 0.75-300mm (Depends on probes)
    Working Frequency (2.5-7)MHZ
    Probe Diameter Standard N05 is10MM、Probe N07 is 6MM、Probe HT5 is12MM、Probe N02 is12MM
    Min. Pipe Diameter Φ15mm×2.0mm
    Resolution 0.1mm/0.01mm
    Accuracy ±(0.5%Thickness+0.04)mm,depends on probes
    Display 4.5 digits LCD with EL backlight
    Single /Scan Mode Four measurements readings per second for single point measurement, and ten per second for Scan Mode
    Probe Calibration Zero Calibration, Two-Point Calibration
    Velocity Range 1000-9999m/s
    Unit Metric/Imperial unit selectable
    Language English
    Memory up to 20 files (up to 99 values for each file) of stored values
    Communication Port USB
    Data Printing Yes
    Power supply Two “AA” size, 1.5 Volt alkaline batteries
    Lower Power Comsumption Y
    Working Hours 100h (EL backlight off).
    Operating Temperature -20℃-+60℃
    Relative Huminity ≤90%
    Appearance ABS Plastic
    Outline 150mm×74mm×32 mm
    Gross Weight 1.5 KG
    PC Datapro Software Yes
    Speech Function No
  • Standard ultrasonic thickness probe N05
    Mitech standard ultrasonic thickness probe N05, suitable for Mitech all line ultrasonic thickness gauges, capable of replacing standard probe N05/90°. If needing N05 probe as standard probe, you should note it in advance. The standard ultrasonic thickness probe N05 with frequency of 5MHz, crystal size of 10mm, its measuring range for common ultrasonic thickness gauge is 1.0-230mm in steel while its measuring range for multi-mode ultrasonic thickness gauge is 1.0-600mm in steel. The cable length of the N05 probe is 90cm and its limitation for the minimum pipe diameter is Φ20mm×3.0mm. Mitech N05 probe, elaborately developed with material of piezoelectric ceramic, engineering plastic and stainless steel, integrated die casting process and splinting probe design for convenient plugging, it can effectively reduce the fault caused by frequent plugging, accurate and durable. It is widely used for monitoring the corrosion thinning degree for various pipelines and pressure vessel of the manufacturing devices in petroleum, chemical, metallurgy, shipbuilding, aviation, aerospace and other fields. It also can be used to make accurate measurement for various plants and mechanic parts. 
    Ultrasonic couplant
    The couplant coated on the probe and the measured workpiece surface as the medium to isolate the air between them, selecting the proper viscosity couplant is the critical thing for the precisely measurement. Mitech series ultrasonic thickness gauge standard 75mm ultrasonic special couplant in the configuration for isolating the air between the ultrasonic probe and the workpiece surface, which can make probe produced ultrasonic wave into the workpiece effectively to ensure the accurate measurement of thickness. The couplant with squeeze bottle packing, it is clean and environmental. It is recommended to select the low viscosity couplant for measuring the smooth material and select the high viscosity couplant (like glycerine cream, butter and so on) for measuring the rough material. 
    ABS instrument case
    The instrument case of Mitech ultrasonic thickness gauge, length: 27cm, width: 22.5cm, height: 7.5cm and weight: 0.698kg, designed with ABS engineering plastic, It has excellent performance like waterproof, shockproof, excellent heat resistance and low temperature resistance. It can effectively prevent oil, dust and corrosion in harsh environment. Its size in line with the standards for aviation and train carrying (capable of putting under the seat and on the luggage rack), it is safe, reliable and stable.
    AA size alkaline battery
    Mitech series ultrasonic thickness gauges, with low-power design and long standby, MT150/MT160/MT200/MT180/MT190/MT600/MT660 are with two AA size alkaline batteries for power supply, easy to replace.
    Attached files
    Mitech ultrasonic thickness gauge with customized packing documents has included product certificate, warranty card, product manual and packing list. The packing documents had used the special printed paper. The manual is with graphic design, beautiful, easy to understand, easy to save for a long time.
    Note: The electronic version of the packing documents for Mitech series products can be downloaded from www.mitech-ndt.com.
  • The standard angle probe N05/90°
    Mitech standard ultrasonic thickness probe N05/90°, suitable for Mitech all line ultrasonic thickness gauges, it is the standard configuration of MT150, MT160 and MT200. The standard ultrasonic thickness probe N05/90°with frequency of 5MHz, crystal size of 10mm, its measuring range for common ultrasonic thickness gauge is 1.0-230mm in steel while its measuring range for multi-mode ultrasonic thickness gauge is 1.0-600mm in steel. The cable length of the N05/90° probe is 90cm and its limitation for the minimum pipe diameter is Φ20mm×3.0mm. Mitech N05/90°probe, elaborately developed with material of piezoelectric ceramic, engineering plastic and stainless steel, integrated die casting process and splinting probe design for convenient plugging, it can effectively reduce the fault caused by frequent plugging, accurate and durable. It is widely used for monitoring the corrosion thinning degree for various pipelines and pressure vessel of the manufacturing devices in petroleum, chemical, metallurgy, shipbuilding, aviation, aerospace and other fields. It also can be used to make accurate measurement for various plants and mechanic parts. 
    Micro-diameter probe N07
    The micro-diameter ultrasonic thickness probe N07, suitable for Mitech all line ultrasonic thickness gauges, it is the standard configuration of MT660. The micro-diameter ultrasonic thickness probe N07 with frequency of 7MHz, crystal size of 6mm, suitable for the measurement of thin wall and small arc surface, its measuring range for common ultrasonic thickness gauge is 0.75-80mm in steel while its measuring range for multi-mode ultrasonic thickness gauge is 0.65-200mm in steel. The cable length of the N07 probe is 90cm and its limitation for the minimum pipe diameter isΦ15mm×2.0mm. Mitech N07 probe, elaborately developed with material of piezoelectric ceramic, engineering plastic and stainless steel, integrated die casting process and splinting probe design for convenient plugging, it can effectively reduce the fault caused by frequent plugging, accurate and durable. It is widely used for monitoring the corrosion thinning degree for various pipelines and pressure vessel of the manufacturing devices in petroleum, chemical, metallurgy, shipbuilding, aviation, aerospace and other fields. It also can be used to make accurate measurement for various plants and mechanic parts. 
    Coarse-grain probe N02
    The Mitech coarse-grain ultrasonic thickness probe N02, suitable for Mitech all line ultrasonic thickness gauges, it is the optional configuration. The coarse-grain ultrasonic thickness probe N02 with frequency of 2.5MHz, crystal size of 14mm, suitable for the measurement of cast iron and other coarse-grain materials, its measuring range for common ultrasonic thickness gauge is 3-300mm in steel while its measuring range for multi-mode ultrasonic thickness gauge is 3-600mm in steel. The cable length of the N02 probe is 90cm and its limitation for the minimum pipe diameter isΦ20mm. Mitech N02 probe, elaborately developed with material of piezoelectric ceramic, engineering plastic and stainless steel, integrated die casting process and splinting probe design for convenient plugging, it can effectively reduce the fault caused by frequent plugging, accurate and durable. It is widely used for monitoring the corrosion thinning degree for various pipelines and pressure vessel of the manufacturing devices in petroleum, chemical, metallurgy, shipbuilding, aviation, aerospace and other fields. It also can be used to make accurate measurement for various plants and mechanic parts. 
    High temperature probe HT5
    The Mitech high temperature ultrasonic thickness probe HT5, suitable for Mitech all line ultrasonic thickness gauges, it is the optional configuration. The high-temperature ultrasonic thickness probe N02 with frequency of 2.5MHz, crystal size of 14mm, suitable for measuring the thickness for high-temperature material under 300℃, its measuring range for common ultrasonic thickness gauge is 3-200mm in steel while its measuring range for multi-mode ultrasonic thickness gauge is 1-600mm in steel. The cable length of the HT5 probe is 70cm and its limitation for the minimum pipe diameter isΦ30mm. Mitech HT5 probe, elaborately developed with material of piezoelectric ceramic, engineering plastic and stainless steel, integrated die casting process and splinting probe design for convenient plugging, it can effectively reduce the fault caused by frequent plugging, accurate and durable. It is widely used for monitoring the corrosion thinning degree for various pipelines and pressure vessel of the manufacturing devices in petroleum, chemical, metallurgy, shipbuilding, aviation, aerospace and other fields. It also can be used to make accurate measurement for various plants and mechanic parts. 
    USB communication cable
    The USB communication cable for Mitech ultrasonic thickness gauge, used for connecting PC and main unit, it can realize applications for communication with computer, analysis and storage the data.
    Data proceeding software
    The data proceeding software for ultrasonic thickness gauge, the standard configuration for MT600/MT660, it can be easily and quickly do data exchange and parameter settings with PC. It has rich features like measurement storage management, statistical analysis of measured value, printing measurement report and so on. It is suitable for steel manufacturing, ship-building, automobile manufacturing, aircraft manufacturing, high pressure vessels, electric devices, bearings, standard parts, metal textile accessories and instrumentation accessories and production enterprises related with metal material products. With the analysis results provided by the software, it can make enterprise quality control more scientific basis and higher traceability. Improving the quality of enterprise information management level is the effectively guarantee for enterprise analysis the product qualification rate and improve the quality monitor. The software can also be used as effective tools in scientific research units related with metal materials, manufacturing plants, universities and other departments engaged in theoretical teaching, experimental analysis and basic scientific research.
    High couplant MHTC-Ⅱ
    The Mitech high temperature couplant GW-II is one of the optional configuration for Mitech series of ultrasonic thickness gauges. The high temperature couplant GW-II, suitable for couplanting between the high temperature probe and the tested workpiece under the temperature lower than 300 ℃, compared with the common couplant, the high temperature couplant with higher heat resistance, it will not produce the smoke during using, more health and environmental, not easy to freeze and flush, capable of ensuring the normal propagation of the ultrasonic signal between the probe and the tested material under high temperature situation to realize the precisely measurement, it is the necessary accessory for thickness measurement under high temperature. It is recommended to use on the probe when do measurement under higher temperature.